Rainbow matchings and cycle-free partial transversals of Latin squares

نویسندگان

  • András Gyárfás
  • Gábor N. Sárközy
چکیده

In this paper we show that properly edge-colored graphs Gwith |V (G)| ≥ 4δ(G) − 3 have rainbow matchings of size δ(G); this gives the best known bound for a recent question of Wang. We also show that properly edge-colored graphs Gwith |V (G)| ≥ 2δ(G) have rainbow matchings of size at least δ(G) − 2δ(G)2/3. This result extends (with a weaker error term) the well-known result that a factorization of the complete bipartite graph Kn,n has a rainbowmatching of size n − o(n), or equivalently that every Latin square of order n has a partial transversal of size n−o(n) (an asymptotic version of the Ryser–Brualdi conjecture). In this direction we also show that every Latin square of order n has a cycle-free partial transversal of size n − o(n). © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Matchings and Rainbow Connectedness

Aharoni and Berger conjectured that every collection of n matchings of size n+1 in a bipartite graph contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. The conjecture is known to hold when the matchings are m...

متن کامل

Rainbow matchings and partial transversals of Latin squares

In this paper we consider properly edge-colored graphs, i.e. two edges with the same color cannot share an endpoint, so each color class is a matching. A matching is called rainbow if its edges have different colors. The minimum degree of a graph is denoted by δ(G). We show that properly edge colored graphs G with |V (G)| ≥ 4δ(G) − 3 have rainbow matchings of size δ(G), this gives the best know...

متن کامل

Abstract—alexey Pokrovskiy

Alexey Pokrovskiy Aharoni and Berger conjectured [1] that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. When the matchings have size ...

متن کامل

Rainbow matchings and transversals

We show that there exists a bipartite graph containing n matchings of sizes mi n satisfying ∑ i mi = n 2 + n/2 − 1, such that the matchings have no rainbow matching. This answers a question posed by Aharoni, Charbit and Howard. We also exhibit (n − 1) × n latin rectangles that cannot be decomposed into transversals, and some related constructions. In the process we answer a question posed by Hä...

متن کامل

Rainbow matchings and connectedness of coloured graphs

Aharoni and Berger conjectured that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is a generalization of several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. When the matchings are all edge-disjoint and perfect, an approximate version of this conjecture follows from a theorem of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 327  شماره 

صفحات  -

تاریخ انتشار 2014